
Available online at www.sciencedirect.com

ScienceDirect
Journal of Consumer Psychology 25, 4 (2015) 690–704
Research Article

The median split: Robust, refined, and revived☆

Dawn Iacobucci a,⁎, Steven S. Posavac a, Frank R. Kardes b,
Matthew J. Schneider c, Deidre L. Popovich d

a Vanderbilt University, Nashville, TN 37203, USA
b Lindner College of Business, University of Cincinnati, Cincinnati, OH 45221, USA
c Medill School of Journalism, Northwestern University, Evanston, IL 60201, USA

d Rawls College of Business, Texas Tech University, Lubbock, TX 79409, USA

Received 17 June 2015; accepted 26 June 2015
Available online 3 July 2015
Abstract

In this rebuttal, we discuss the comments of Rucker, McShane, and Preacher (2015) and McClelland, Lynch, Irwin, Spiller, and Fitzsimons
(2015). Both commentaries raise interesting points, and although both teams clearly put a lot of work into their papers, the bottom line is this: our
research sets the record straight that median splits are perfectly acceptable to use when independent variables are uncorrelated. The commentaries
do a good job of furthering the discussion to help readers better develop their own preferences, which was the purpose of our paper. In the final
analysis, neither of the commentaries pose any threat to our findings of the statistical robustness and valid use of median splits, and accordingly we
can reassure researchers (and reviewers and journal editors) that they can be confident that when independent variables are uncorrelated, it is totally
acceptable to conduct median split analyses.
© 2015 Society for Consumer Psychology. Published by Elsevier Inc. All rights reserved.
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Introduction

In Iacobucci, Posavac, Kardes, Schneider, and Popovich
(2015), we had documented the enormous popularity of median
splits, in consumer research, psychology, and numerous other
fields. We had acknowledged the traditional concerns regarding
median splits regarding the loss of information and resulting
power. More importantly, we sought to investigate the extent
to which the more recently expressed concern about median
splits held true, that using median splits may give rise to Type I
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errors. Our approach was more comprehensive than that of the
literature to date because we designed full simulation studies
rather than relying on an anecdotal data set.

We found that in the presence of multicollinearity, median
splits could indeed result in Type I errors, though the effects
were often negligible. The results of our studies were clean and
unambiguous; in the absence of multicollinearity, median splits
do not create misleading results. We made it clear that the
findings were not attributable to the use of an ANOVA vs. the
regression model, but rather due to the presence or absence of
multicollinearity. If a researcher is running an experiment, such
as a typical factorial (or other orthogonal design), then letting a
median split serve as a factor is completely legitimate.

In our Discussion section, we mentioned that median splits
were not likely to have caused problems in published articles
and we explained why. We also explained that our statistical
results hold for naturally occurring or experimenter-created
groups. We demonstrated that our results held even in the
presence of extremely non-normal distributions (e.g., quadratic,
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Fig. 1. Standard normal distribution, α = 0.05, critical z = 1.96.
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natural log, bimodal, and uniform). We also entertained the
notion of two median splits in a single study, that while such a
practice might not seem advisable, in truth, it may well be less
problematic than one might first think.

Finally, in our paper, we stated repeatedly and quite clearly
that we were not intending to persuade researchers who like
their continuous variables to begin dichotomizing. Rather, our
study provides support for researchers who like working with
median splits due to the beauty of their parsimony, and the
ease with which they may be communicated. The findings of
Iacobucci et al. (2015) support those researchers in their
preferences for median splits.

Although we suspect that the commentaries as a whole
would have added more value if a psychologist or consumer
researcher favorable to median splits wrote one of the com-
mentaries, the upside of our having received commentaries
written by two teams with a track record of opposition to
median splits is that readers can be confident that any possible
objection to our results has been generated. Thus, taken
together, we are delighted with the commentaries by Rucker,
McShane, and Preacher (2015) and McClelland, Lynch, Irwin,
Spiller, and Fitzsimons (2015), and this opportunity to clarify
and reify the fact that median splits are a perfectly valid, and
extremely useful analytical tool for researchers. The commen-
taries offer a range of opinions, from concepts that are ab-
solutely correct on one hand (e.g., Rucker et al.'s points that, all
other things being equal, Type I and Type II errors rise and fall
in opposition, and that regressions in and of themselves do not
support causal statements, or McClelland et al.'s remarks that a
median split is known to reduce power), to erroneous on the
other (e.g., McClelland et al.'s claim that our simulations
were incomplete or incorrect with technical errors, and their
false equivalence logical fallacy when appealing to the ESP
literature). The styles of the two commentaries are rather
different, with the first being deeper and focused, whereas the
second is broader. We address the arguments in each com-
mentary in turn, concurring and clarifying as appropriate.

Commentary by Rucker, McShane, and Preacher

Rucker et al. (2015) offer a number of well thought-out
arguments about the treatment of continuous and median split
variables, and we feel that when readers compare their
perspective with ours, our goal of moving the field toward a
more nuanced understanding of median splits is greatly
facilitated. Recently, the field had been told to reject median
splits because of concerns regarding Type I error based on an
overly broad conclusion derived from a highly artificial and
constructed data set. The main purpose in our paper was to
show that concerns with Type I error are, in fact, bounded
within certain methodological contexts. In perhaps the most
common experimental scenario in which median splits are
used, wherein one factor is an experimental manipulation and
the other factor is a median split, our paper shows that Type I
error is not increased by median splits. Rucker et al. seem to
concede this point, but nevertheless having concerns with
median splits, change the focus of the debate from Type I to
Type II error. Although we see some of the issues raised in
Rucker et al.'s commentary differently, we feel that they make
a number of well-reasoned arguments regarding Type II error
that help to increase the sophistication of the discussion
regarding median splits.
Type I and Type II errors

If this discussion is to revolve around Type I and Type II
errors, let us review the basics. Fig. 1 depicts two normal
distributions. The distribution at the left, drawn in a solid line,
is the distribution around the null hypothesis population mean,
μ = 0, the one being tested. The distribution at the right, drawn
in a dashed line, is a distribution around a different population
mean, μ = 1.5. In the left-hand distribution, the critical regions
are drawn at ±1.96 for a Type I error rate of α = 0.05 in a
two-tailed test. If the null hypothesis is true and a calculated z
exceeds ±1.96, the researcher would make a Type I error. Type
II errors reflect the opposites—the opposite reality and the
opposite decision. If the null hypothesis is not true, but z falls
short of ±1.96, the researcher does not reject the incorrect null,
committing a Type II error, the likelihood of which is depicted
by the shaded area labeled β. Recall the standard label of the
probability of committing a Type I error is α, and that for a
Type II error is β.

Students of statistics are taught that there is an inverse
relationship between Type I errors and Type II errors. It is not a
simple relationship, as if α and β sum to some constant value, in
part because a Type I error can only occur if the null hypothesis
is true, and a Type II error can only occur if the null hypothesis
is false, and of course these conditions cannot both hold
simultaneously. In Fig. 2, we depict the two distributions with
the use of a more conservative α = 0.01 In changing critical
values from 1.96 (for α = 0.05) to 2.58 (for α = 0.01), the Type
I error probability has decreased. Note that the Type II error, the
size of the area under the curve labeled β has increased in Fig. 2
compared with Fig. 1. Figs. 1 and 2 illustrate how the
relationship between α and β holds, that as an α-level decreases,
the β probability increases. (Conversely, as α increases, say
from 0.05 to 0.10, then the likelihood of a Type II error, β,
decreases.)

Given that basic frame, let us now add the notion of
power to the mix, recall it to be the likelihood of rejecting the



Fig. 2. Standard normal distribution, α = 0.01, critical z = 2.58.
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null hypothesis when the null is indeed false. Power is denoted
(1 − β) as the probabilistic opposite of the likelihood of
committing a Type II error, β. Power captures rejecting the null
when we should, and β reflects not rejecting the null when we
should. Power is a reflection of many factors, some of which
are under the researcher's control and others of which are less
so. For example, for many statistical tests, power is enhanced
when the effect size is large, e.g., when the observed mean is
very different from the hypothesized mean under the null, or
when two sample means are very different from each other. For
many statistical tests, power is also a direct function of sample
size. Even without resorting to so-called big data, most
researchers gather samples that are as large as they can, given
participant pool hours, or budgetary or temporal constraints, at
least sensibly within reason, e.g., as large as the size of samples
that they have used in the past or that approximate the norm in
the literature reporting studies of similar phenomena. (Almost
never do researchers report a power calculation in an effort to
estimate requisite sample size prior to collecting the data, but
obviously this step would be useful.)

What's a researcher to do? Larger samples enhance power and
decrease Type II errors

The reason it is important to understand the relationships
among Type I errors (α), Type II errors (β), and power (1 − β), is
that we all know that researchers can make trade-offs among
them. Say a researcher were to use the traditional Type I error rate
of α = 0.05. And say the researcher desired to use a median split
but was concerned about the 20% reduction in effect size and
power. The researcher can compensate by drawing a somewhat
larger sample to help enhance power. If power (1 − β) increases,
the probability of a Type II error, β must decrease. Thus, by
increasing sample size, the researcher achieves the excellent goal
of overcoming the reduction in power caused by the median split,
thereby accordingly also decreasing the likelihood of making a
Type II error (i.e., the concern of Rucker et al.).

Our purposeful focus on Type I errors

Iacobucci et al. (2015) had focused on Type I errors because
that had been the status quo lingering concern in the literature.
As presented in Iacobucci et al. (2015), the traditional
concerns with median splits had been their resulting smaller
effect size and loss of power. The more recent concern had
circulated that the use of a median split might actually increase
Type I errors. Given that the first concerns had been known
for decades, and many researchers had been willing to pay the
price of slightly reduced power, our paper naturally focused
more on the newer issue of possible Type I errors. Our
simulations demonstrated that without the accompanying
problem of multicollinearity, median splits resulted in no
more Type I errors than a regression on a continuous variable
would, and no more Type I errors than their nominal level,
namely α.

In focusing their commentary on Type II errors, Rucker et al.
essentially cede the issue of Type I error equality. That is, there
is no more to be said about Type I errors in the presence of
median splits because our studies showed that without
multicollinearity they do not occur. Yet turning to the issue of
Type II errors is reminiscent of the old debate surrounding
theory testing and effects estimation. Type I errors are
intimately connected to theory testing. Calder, Phillips, and
Tybout (1981) made the clear case that science is about theory
testing and building, even more to the point, “falsification
procedures” (p. 198, italics in original), per Popper (2002a). In
the statistical machinery that is used for scientific progress,
falsification in theory testing and building is quite pointedly
directed at constructing a null hypothesis, which the mechanics
of statistical theory attempts to reject. A null hypothesis is
posited and tested, and if rejected, that premise in the overall
argument is rendered invalid, bringing down the larger theory,
of which the hypothesis was a part. Of course the complexity
of bridging the philosophical and the statistical is that a theory
is comprised essentially of alternative, not null, hypotheses,
whereas the statistical machinery is conducted on null
hypotheses. Specifically, a valid symbolic logical argument is
constructed with the premise, p → q (that is, if p then q),
followed either by affirming the antecedent (and p, therefore q),
or by denying the consequence (not q, therefore not p). In
statistics, we translate p and q as follows: “If the null hypothesis
is true, then in our data we shall see μ1 = μ2. In the data we
learn that μ1 ≠ μ2. Therefore we conclude the null hypothesis
is not true; we falsify the null.” A theory often postulates
expectations of differences between groups so rejecting a null
of equality offers a tentative step toward substantiating the
theorizing. A statistical test is conducted, and if the null is
rejected, the scientist evaluates that premise in the theoretical
argument (which served as the alternative hypothesis in the
statistical machinery) as “reasonable, so far.” Subsequent stages
of progress require the scientist to modify the theory and
resubmit the new premises into an even stronger theory, to be
tested subsequently. Naturally with a focus on scientific
progress, theory testing and building, researchers and editors
and journal reviewers care about whether that scientific task can
be achieved properly; hence an emphasis on Type I errors. Also
note of course that Calder et al. (1981, p. 199) further mention
that theory testing is foundational to any subsequent efforts of
theory application and effects estimation.
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A researcher's freedom of choice

One final concern that arose as we read Rucker et al. (2015)
was their comment that researchers are not just hurting
themselves (e.g., with lack of power) by using a median split
but that somehow they are hurting the field. Of course one
cannot argue with not wanting to hurt the field. Unfortunately
in this case, that goal is being attached to a choice of analysis
that is a matter of simple preference. We believe, indeed for the
good of the field, that researchers should be allowed to retain
their free will and freedom of choice among their statistical
techniques. Science is, after all, empirical. Let the data speak. If
median splits were not fruitful, or if they led to irreplicable
results, researchers would have ceased using them decades ago.
If other researchers find regressions more enlightening, they
should continue to use their analytical tool of choice. Our
position is that a paternalistic stance against median splits is
simply not empirically justified. Researchers should be able to
choose from among their preferred models and analytical tools.
To draw a parallel, behavioral researchers who currently prefer
regression could be reminded that regression is but one
extremely simple form of a structural model that is subsumed
into the fuller, richer structural equations modeling framework
(Aaker & Bagozzi, 1979; Anderson & Gerbing, 1988; Fornell
& Larcker, 1981; Iacobucci, 2009, 2010; Iacobucci, Saldanha,
& Deng, 2007). In the same way that regression is a perfectly
valid technique for many applications, and should not be
judged as uniformly inferior to more comprehensive structural
equations modeling, median splits are also a valid technique in
the methodological contexts we have specified.

Finally, several minor points need clarification:

• In their section headed “Costs,” the paragraph beginning “1.
Replicating prior research,” note that we investigated the
behavior of one median split, not two simultaneously.

• Their next point, “2. In their first simulation” is a bit
misleading—we demonstrate that no spurious effects
occur if there is no multicollinearity, and we show that in
the presence of multicollinearity, the spurious effects are
tiny.

• Shortly thereafter in a paragraph headed “Increased Type II
error,” the statement “A similar loss of power from 80% to
just under (sic) 60% occurs,” should say “just over 60%.”

• In a section headed “Perceived benefits,” Rucker et al.
invoke Occam's razor in support of regression over median
splits, but their statement is incorrect in saying that a median
split requires more parameters than regression. In addition,
statisticians and modelers assess parsimony and robustness
on several dimensions, one being the number of assumptions
required by the model, and obviously regression is more
demanding on that score.

• In the section on graphs, we too are fans of data visualization
and welcome its return with “big data,” but plots will not likely
be replacing summary statistics in journals in the near term.
(Even so, we liked Rucker et al.'s Figs. 1 through 3 and
believe that they convey essentially the same theoretical
information.)
• It might also be mentioned that Rucker et al. are somewhat
overstating the certainty that researchers may attach to
measured variables. For example, they say that combining
an observation that is very high on some variable with one
that is somewhat high on the variable is “simply incorrect”;
and three times they use an example of saying that attitude
scores of 6.5 and 9.5 are different. Perhaps they are, but
perhaps they are not; the distinction overstates the accuracy
and precision with which most unobservable traits and
constructs are measured. It ignores a vast psychometric
literature (Allen & Yen, 2001; Anastasi & Urbina, 1997;
Carmines & Zeller, 1979; DeVellis, 2011; Kerlinger, 1999;
Nunnally, 1978; Pedhazur, 1991), e.g., beginning with
Classical Test Theory positing an observed data point as a
function of a person's true score plus error: X = τ + ϵ (with
ϵ contributing variability over trials within a person, or over
persons within a sample). Even if a researcher is not familiar
with measurement theory, note that the model specification
is much like that in classical statistics: X = μ + ϵ (where ϵ is
most frequently considered to be contributing variability
over persons within a sample).

• The Gelman and Park (2009) idea of splitting a variable into
three parts is fine, but note the relative efficiencies being
discussed compare their dropping the middle part of a
distribution of data, which reduces the effective sample size.
Nowhere have we advocated deleting observations. Related
to this point is the concern that Rucker et al. use the term
“efficient” in quite a number of locations throughout their
commentary. Yet a proper assessment of statistical efficiency
(related to an asymptotic standard error (ASE), or a uniformly
minimum variance unbiased estimator (UMVUE), or even the
efficiency of an experimental design) requires more informa-
tion than the commentators have provided, e.g., regarding
distributions and sufficient statistics (cf., Shao, 2003).

• In the section labeled “Multiple measured variables,” we
actually agree that sometimes ignoring a little bit of
multicollinearity can be acceptable. Even in the case of
median splits, the damage that multicollinearity creates is
minor. But we were a bit bemused that Rucker et al. were
fairly cavalier about multicollinearity but seem to take a hard
stand on median splits.

• The title to their Table 1 claims numerous statements, none
of which we made. We have said that if predictor variables
are uncorrelated, the use of a median split is valid.

In sum, Iacobucci et al. (2015) delineated methodological
contexts in which there are no concerns of Type I error risk
being inflated by median splits, and in other contexts in which
median splits can increase Type I error risk, the threat is minute.
Accordingly, the Rucker et al. (2015) commentary left the
grounds concerning Type I errors for an altogether different
direction of concern over Type II errors. Even students in
introductory statistics classes are taught that on occasion,
researchers might weight the penalty of a Type II error more
heavily than a Type I error, and naturally we agree. Yet the
majority of our collective attention is in the journals and it is
easy to argue that in the falsification philosophical orientation
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of theory building and testing, scientific progress and pub-
lishing, a nearly exclusive focus on Type I error dominates, a
perspective with which we suspect Rucker et al. (2015) would
agree, even if perhaps ruefully. Whether one's research focuses
on Type I or Type II errors, we trust our colleagues to exercise
common sense.

Commentary by McClelland, Lynch, Irwin, Spiller,
and Fitzsimons

McClelland et al.'s commentary covers a lot of ground, and,
as with Rucker et al., we hope that their thoughts, as well as our
response, will help the field move toward a more accurate
understanding of the properties of performing median splits.
We very much appreciate the work of Irwin and McClelland
(2001) in clearly explicating the notions of interaction tests in
regression, in the vein of work by Jaccard, Turrisi, and Wan
(1990) and Aiken and West (1991). Similarly, Spiller,
Fitzsimons, Lynch, and McClelland (2013) showed how to
use the broader logic of confidence regions (geometric-based
confidence intervals, also see Hayes & Matthes, 2009), and
Fitzsimons (2008) performed a valuable service by reminding
researchers of the utility of regression when considering their
analytical choices. Given these researchers' work advancing
and communicating the benefits of regression-based analyses,
it is not surprising that they would advocate regression
approaches in lieu of median splits. By comparison, our
research came from a point of empirical inquiry, not a position
of advocacy, pro or con, with respect to continuous or median
split variables. Our findings indicate that although using
regression as prescribed by the commentary team is fine, the
empirical evidence we found simply does not support their
prescriptive advice to unconditionally reject median splits. Our
research provides the remedy to swing the pendulum back to
center; a moderate position from which a researcher is free
to choose to analyze a continuous variable or a median split
variable.

In their efforts to sway researchers from considering median
splits, McClelland et al. offer a variety of arguments in a
shotgun approach, hoping some criticism will hit the target.
Although some of their exposition is pretty obviously not
useful (e.g., their fallacious opening with reference to ESP,
or claiming that they are “quite sure” that a departed statistician
would agree with them), many of their points are worth dis-
cussing. Their issues come in one of three forms: 1) statements
about statistical relationships that are interesting but irrelevant,
and because they have no bearing on the median split issue, we
will call these distractors or red herrings, 2) statements about
statistical relationships or our research that are incorrect and
that we will clarify, and 3) several statements are comments
with which we agree, and we will happily point out our
concurrence. The McClelland et al. commentary offers the
peripheral cue of sheer number of arguments, yet, so that
readers are not misled, we will patiently trod through them to
explain their sources of confusion or error. Their commentary
frequently uses expressions such as “We strongly disagree,”
and we will not because we need not: we are not offering
opinions in matters of preference, we are presenting facts and
mathematical and statistical findings, thereby elevating the
discussion to matters of science rather than the politics or
sociology of science. For example, in several places,
McClelland et al. refer to “technical errors,” “discrepancies,”
or “serious problems” with our simulations, and their criticisms
are incorrect. We will show where, how, and why their
criticisms are wrong.

One size does not fit all—regression is not an omnibus cure

Before addressing McClelland et al.'s specific points, we
begin with a general consideration of regression. It is important
to recognize at the outset that there is nothing magical about the
regression model, and that, in and of itself, using regression
does not make results better. Regression is a wonderful
technique for many applications, but is not appropriate for all
types of research questions. Accordingly, it would be
problematic for our field to develop a norm in which
researchers feel compelled to use regression when other
procedures could potentially yield more meaningful results.

Consistent with the notion of the limitations of regression,
Rosenthal and Rosnow (1991) maintain that the problems
associated with the use of multiple regression are “too
infrequently recognized” (p. 558). For example, the “magnitude,
sign, and statistical significance of each regression coefficient
depend entirely on exactly which other predictor variables are in
the regression equation (italics in the original) …. The p values
printed for the overall R and for the regression coefficients of
each predictor variable are the samewhether the particular battery
of predictors was planned as the only battery of predictors to be
employed (almost never the case) or whether some algorithm was
used to pick out the best set of k predictors from a larger set of
possible predictors (almost always the case). The printed p values
are accurate only in the former (unlikely) case; they are not
accurate in the latter (common) case” (Rosenthal & Rosnow,
1991, pp. 558–559). It is unclear how to compute p values in the
latter case, and shrinkage, or weaker effects in replication studies
are common (Moses, 1986).

Collinearity or multicollinearity—high correlations among
predictor variables—also produces interpretational problems
(Moses, 1986). Rosenthal and Rosnow (1991, p. 559) say that
“multiple regression approaches to inferring causality can yield
results that are very misleading” (see also Cook & Campbell,
1979). Other scholars concur: the “Interpretation of the
[regression coefficients] from the results of a simultaneous
regression of [highly correlated independent variables] that
ignores their multicollinearity will necessarily be misleading”
(Cohen, Cohen, West, & Aiken, 2003, p. 98).

Any research approach or analytical model has its strengths
and weaknesses—this truism also holds for regression. Allison
(1999, p. 63) says, “Multiple regression is designed precisely
for separating the effects of two or more independent variables
on a dependent variable when the independent variables are
correlated with one another, but there's a limit to what
regression can do …. Multicollinearity doesn't have to be so
extreme to cause problems, and unfortunately, those problems
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often go undetected.” For example, it is known that when there
is multicollinearity, “small differences in [the predictors']
bivariate relationships with the dependent variable get magni-
fied into large differences in the regression coefficients”
(Allison, 1999, p. 144). Multicollinearity renders regression
coefficients unstable, and less robust to minor errors or
departures from the assumptions of the regression model.

Interpretation of regression results in the face of multi-
collinearity is ambiguous at best. Allison (1999, p. 63) states
that if X1 and X2 are correlated, “it's unlikely that either
coefficient would be statistically significant. On the other hand,
it's entirely possible that if we ran the regression with only the
[X1] variable or, alternatively, only the [X2] variable, we might
find large and highly significant coefficients for both variables.
This would tell us that one or both of these variables had a
substantial effect …, but we couldn't say which one.”

Berry and Feldman (1985, p. 40) explain: It is known that
multicollinearity makes it “impossible to separate out the
effect” of one predictor. This effect is due to the increase in the
size of the covariances between the parameter estimators. In a
simple model with just two predictors, “the correlation between
estimators b1 and b2 is −rX 1X 2 , the inverse of the correlation
between the two independent variables …. This, of course,
implies that conclusions drawn about the relative impacts of the
two independent variables on the dependent variable … are very
shaky” (Berry & Feldman, 1985, p. 42).

Not only is it the case that multicollinearity can create
ambiguity in interpretation, it is also well-known that multi-
collinearity diminishes power. To see how, recall the standard
error for a regression coefficient for predictor Xi is defined as
follows (e.g., see Berry & Feldman, 1985, p. 13):

sbi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
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where Ri
2 is the squared multiple correlation when predicting

variable Xi from all the other predictors in the model. To the
extent that a variable Xi is multicollinear with one or more of
the other predictors or any linear combination thereof, then Ri

2

will be large, and (1 − Ri
2) will be small. A small (1 − Ri

2) in
the denominator of the equation above ensures that the standard
error for variable Xi, sbi will be large. Given that the standard
error serves in the denominator of the t-statistic that tests
whether the contribution of variable Xi to the prediction and
understanding of the dependent variable is different from
zero, the size of the t-test is diminished. The bottom line
here is that multicollinearity increases a standard error and
thereby decreases a t-test, thus decreasing the power of the
t-test and the likelihood of a conclusion that the predictor is
significant.

Iacobucci et al. (2015) had demonstrated that a median split
coupled with multicollinearity similarly can be problematic. It
is easy to understand that multicollinearity is the main culprit,
given that it causes analytical problems, per above, even
without a median split. Multicollinearity was also shown to be
the main culprit in Iacobucci et al. in that in its absence, there
were no problems with median splits regarding Type I errors.

McClelland et al.'s specific concerns

We turn now to the specific concerns raised in McClelland
et al.'s (2015) comments. They first offered four statistical
claims, they say, in a “nutshell,” then they considered
non-statistical issues, next they discussed additional statistical
considerations relating to Type I and Type II errors, and then
they raised questions regarding our simulations. To assist the
reader, we proceed by mapping our answers sequentially to
their questions.

McClelland et al.'s statistical argument a

McClelland et al.'s first concern regards the measurement
error that results when a median split is used. Regardless of
whether one analyzes a continuous or median split variable,
there is of course measurement error in presumably any
variable, any operationalization of a latent construct, whether
that error is recognized and separated out, as in a structural
equations model, or ignored and left confounded, as is done in a
regression model's lack of fit error term. The important point
that our simulations make is that no bias toward Type I error
occurs when a median split is conducted in the absence of
multicollinearity.

McClelland et al.'s statistical argument b

McClelland et al. (2015) refer to a thought experiment of
“scrambling” data. We are not certain about this point being
made regarding random in, random out. However, we certainly
agree that if a researcher were to scramble data, then it would
not be surprising if the results were random and less than
optimally interpretable. We have demonstrated empirically
when median splits do and do not lead to increased Type I error
risk. The important point, as we discuss in more detail later, is
that when multicollinearity is absent, McClelland et al.'s
concerns about unscrupulous researchers picking the technique
more complementary of their theories cannot apply because the
continuous and median split results converge.

McClelland et al.'s statistical argument c

McClelland et al. next raise an issue regarding nonlinearity.
Most researchers, behavioral and quantitative, users of median
splits or regressions, do not tend to track down functional
forms, be they step functions, quadratic or other power terms,
or the like. Almost never do researchers show interest in, or
more importantly, theory for, points along curves. And almost
never do researchers using regressions report that they tested
the underlying assumptions, such as homoscedasticity, linear-
ity, and normality (of ϵs for the statistical tests of βs to be
valid). Nor are we proposing that these basic tests be required,
primarily because we can grant that regression is a robust
technique. Of course, a median split will be all the more robust
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(because it doesn't require an assumption of linearity, and
the homoscedasticity assumption in regression simplifies to
homogeneity of variances in just two groups rather than at all
points along a continuous predictor variable). A median split
focuses on two points in space; a regression focuses on a slope,
which is defined by two points in space. A geometric entity of
n-dimensionality may be defined on n + 1 (noncollinear) points
in space. Thus, a one-dimensional line needs two points for
definition. Those points may be contained among others, as in a
regression line, defined as b0 + b1X1, e.g., one point having
coordinates [(X1 = 0), b0] and another point having coordinates
[(X1 = c),( b0 + b1c)], or they may be points that represent two
means, one in a median split low group and the other in a
median split high group.

McClelland et al.'s statistical argument d

McClelland et al.'s final argument in this section is that
median splits are sample dependent, that is, samples will be
different from each other with regard to their distributions. We
see this argument as less than compelling as a criticism, indeed
we would take the claim farther than they and state that every
statistic calculated based on observations of any sample will be
sample dependent, including, for example, the summary
statistics used in regression. It is true that if two different
samples are split into “low” and “high” then the “lows” in one
group might be nearly as “high” as the highs in another group.
For example, if a company tracked customer satisfaction scores
in the U.S., they would have some range of values, from low to
high. If the company tracked satisfaction scores in a country
known for its polite acquiescence, those scores would also have
some range, from low to high, where the high scores in the U.S.
might be among the lower scores in the second country. This
issue has nothing to do with categorization. If the satisfaction
scores were not dichotomized, then the two continua might
overlap, but the U.S. continuum would fall lower than (or to the
left of) the second country's continuum. The bottom line is that
this argument is a bit of a red herring—the median in a sample
is exactly that; a statistic that describes a given sample.
Similarly, a regression analysis of a sample of data will not
characterize another sample of data. As with other statistics, it
is important to be mindful when interpreting data and not
to claim unwarranted external validity. This admonition is
appropriate in any context in which data is collected from any
sample.

McClelland et al.'s nonstatistical issues

McClelland et al.'s nonstatistical issue 1

McClelland et al.'s first nonstatistical issue is predicated on
their claim that we argued that median splits should be
considered as a viable option because they are popular. This
is not quite what we said. In Iacobucci et al. (2015), we
reviewed the literature on why median splits are often attractive
to researchers, and wanted to catalog their popularity to frame
the importance of furthering our knowledge and sophistication
regarding when median splits are, and are not, appropriate. Our
contribution is delineating the answer to this question.

McClelland et al. then forward the case of a Science paper
investigating the relationship between income and cognitive
functions, a case with which we see at least three concerns.
First, from our research, we know that empirically the only way
that the median split results could have yielded significance
when the continuous variables did not would have been if there
had been a great deal of multicollinearity, thus, we may infer
from those findings that there had been multicollinearity in their
data. Second, we do not know exactly how the analyses were
conducted in those studies (nor do McClelland et al.). The
articles state that Mani, Mullainathan, Shafir, and Zhao (2013)
wished to dichotomize their income variable since, unlike
attitudes and other constructs that form the mainstay in con-
sumer psychology that are very often at least roughly normally
distributed, economists will verify that income is consistently
skewed. As the commentators in the Science debate, Wicherts
and Scholten (2013) treated income as continuous, they
indicated an extreme unbalancedness in the design which is
known to be detrimental to statistical power (one sample size
was approximately only 40% of the size of the other sample),
and then they used an unspecified transformation on the
dependent variable, which they said created a platykurtic
distribution (like a normal, but flatter); i.e., a distribution shape
closer to uniform that might very well nullify regression results.
All of these issues have nothing to do with the dichotomization.
Finally, of course, any of the Mani et al. or Wicherts and
Scholten analyses may have been done improperly. Given the
ambiguity in their data and analyses, we find the example to be
not particularly enlightening for informing our findings. We ran
simulations precisely to study the phenomena fully, across a
375-cell immense factorial, rather than focusing on only one
anecdotal data set.

McClelland et al.'s nonstatistical issue 2

As with the first issue, much of McClelland et al.'s critique
is of ideas that were not present in Iacobucci et al. Our point
here is that when researchers are interested in variables that are
typically thought of as categorical, median split analyses are a
good match for researchers' conceptualizations of their research
problem. For example, if a paper compares behavioral dif-
ferences between liberals and conservatives as defined by a
median split, those authors are not claiming that there are not
gradations of liberalism and conservatism, or that the numbers
of liberals and conservatives in the broader environment
are equal, but simply that individuals categorized as liberals
versus conservative behave differently. That is, we agree with
McClelland et al. that a continuous measure of a person's
degree of leaning toward liberalism or conservativism could
be very useful, but we can also state unequivocally that a
binary conceptualization is obviously very useful too, e.g., in
predicting election outcomes, when a perhaps continuous
political opinion will manifest itself in a binary behavioral
outcome, namely a vote for a Democratic or Republican
candidate (cf., the political science literature).



Fig. 3. Information contrasted via two means after a median split compared with
regression lines drawn to probe interactions.
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McClelland et al. argued that most researchers consider the
need for cognitive closure construct to be continuous and not
categorical, and they cited two articles by Arie Kruglanski.
However, they failed to cite a representative sample of
Kruglanski's path-breaking work on the need for cognitive
closure (e.g., Kruglanski, Dechesne, Orehek, & Pierro, 2009;
Kruglanski et al., 1997). Kruglanski is an extremely productive
and influential researcher in psychology (e.g., he has 23,000
citations in Google Scholar), and he routinely uses median
splits in over 95% of his articles on the need for cognitive
closure. A careful reading of Kruglanski's work reveals yet
another benefit of median splits: Performing median splits on
the measured need for cognitive closure permits comparison to
studies using situationally manipulated need for cognitive
closure. Kruglanski frequently finds a similar pattern of results
for both types of variables.

Finally, it is unclear why McClelland et al. feel that
presenting data as a median split would preclude researchers
from examining nonlinear relationships. Descriptive statistics
may be computed for continuous or median split variables,
plots may be examined, and model assumptions tested. Indeed,
should there be obvious nonlinearities, researchers would be
better served by a median split analysis than a linear regression
conducted on the continuous variable (the regression requires
the assumption of linearity to hold, and while the regression
model is rather robust, the assumption is not required of the
median split analysis).

McClelland et al.'s nonstatistical issues 3 and 4

Third, McClelland et al. (2015) state that regression is easy
to use and that creating interaction plots is easy. We agree.
Regression models are fit, and parameter estimates used to
compare slopes and to generate points to plot, and multiple
primers abound (cf., Aiken & West, 1991; Bauer & Curran,
2005; Berry & Feldman, 1985; Dawson, 2014; Dawson &
Richter, 2006; Fraas & Newman, 2005; Hayes & Matthes,
2009; Irwin & McClelland, 2001; Jaccard et al., 1990; Johnson
& Fay, 1950; Potthoff, 1964; Spiller et al., 2013). Yet by
comparison, the steps for a median split analysis are simply:
1) find the median, 2) split the data at the median and 3) run the
ANOVA (or regression).

In Iacobucci et al., we had also pointed out that a plot probing
an interaction in regression yields very similar information to a
plot of means after a median split variable is created. In Fig. 3, we
depict the relationship: regression interactions are often plotted at
+1.0 and −1.0 standard deviation. In a normal distribution, the
quartiles fall at z = −0.67, z = 0.00, and z = 0.67 standard
deviations, and the means above and below z = 0.00 fall at ±0.8
standard deviation units, incidentally close to +1. Researchers are
comparing essentially the same information.

McClelland et al. seem to imply that there exist researchers
without the sophistication to conduct regressions or regression
plots. We give our colleagues more credit than that—researchers
know ANOVA and regression, and they continue to learn how to
analyze data using optimal methods for their projects. The point
of our paper had been to document that recent criticisms of
median splits are overstated, and that median splits are acceptable
when predictors are uncorrelated. Accordingly, our position is
that researchers can decide for themselves which technique is
more preferred in such a situation.

McClelland et al.'s (2015) fourth point, about parsimony, is
essentially the same as their third, although they try to
strengthen their case by name-dropping famous scientists. We
find their invoking Galileo particularly interesting considering
that Galileo was trying to get people to understand that the earth
revolved around the sun, using facts (much like trying to
convince people that median splits may be used, using facts)
and he faced opposition based on polemics and opinion.

Regarding parsimony, we suggest, as a thought experiment,
adopting the perspective of a statistical modeler for a moment.
A modeler would see regression as more complex and less
parsimonious than a median split in part because regression
carries more assumptions. Yet we can grant that this complexity
does not constitute a reason to impose a blanket restriction on
conducting regression analyses. Finally, contrary to McClelland
et al.'s definition, most researchers and the literature would
characterize median splits as more parsimonious (cf., Fitzsimons,
2008).
McClelland et al.'s second section on statistical issues

McClelland et al. deny the fact that median splits are more
conservative

McClelland et al. open this section by arguing that median
splits reduce power, a fact known in the literature for decades,
and something we discussed both in our original paper and in
our response to Rucker et al. We stand by the statement, per the
literature, that using a median split is conservative. McClelland
et al. then mention Type II errors, and do not feel that trading
off a reduction in power is worthwhile without a commensurate
advantage provided by median splits. This is a perfectly
acceptable preference, but it is pseudodiagnostic regarding our
findings that median splits may lead to Type I errors when
multicollinearity is present, but not when absent.
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The notion that median splits provide another way to do an
analysis, which would allow researchers to choose whichever
technique is most favorable to their theories and thereby
increase the field wide incidence of Type I errors, is not a
strong argument because it is not unique to median splits; there
are always multiple ways to analyze any given data set. The
focus in our original paper is on the statistical properties of
median splits, and the findings we delineated are completely
independent of concerns with researchers choosing analyses
that best support their theories, nor did we ever endorse, state
or imply such a practice. We believe that in practice,
researchers seem to have a natural affinity for working with
median splits or continuous variables and rarely bother to check
the alternative analysis because they are choosing to work with
the variable operationalization that best fits their substantive
theoretical conceptualization. In fact, we all know some
researchers who like median splits so much that they produce
regressions and regression plots only if they must, at the request
of reviewers and editors. We all also know some researchers
who like regressions and regression plots so much that they
would prefer to never conduct a median split.

McClelland et al. then offer a small, one-cell simulation to
show that “picking and choosing” inflates a nominal Type I
error rate of 0.05 to 0.08. No doubt Type I errors were inflated.
However, this issue is another distractor. First, we have never
endorsed or even mentioned engaging in their indefensible
practice of running two correlations and choosing whichever
was larger. Second, if either a continuous or median split
variable (but not both) were tested on its own, the Type I error
rate would approximate the nominal rate of 0.05. Let us make it
explicit that McClelland et al. were implicitly testing two
correlation hypotheses, not one. Thus it is not in the least bit
surprising that they obtained inflated Type I errors. It is
well-known that in such circumstances, researchers may wish
to use a Bonferroni adjustment on the nominal α = 0.05 by
dividing it by the number of tests (in this case, 2), to obtain the
proper significance level for each test so that the family-wise
Type I rate is not increased. Third, their correlations were based
on the same data, hence involving a covariance across the two
statistical tests violating an assumption of independence in
conducting the tests. Thus their Type I errors were boosted in
part because the tests were conducted on redundant informa-
tion, and boosted further still because of their “picking and
choosing” procedure, which is supported by no statistical
principle, theory, or practice. For all these reasons, their finding
is simply an error and off point. Our simulations reported
effects (e.g., βs) and significance levels (p values) for the
continuous treatment of a variable in its entirety across the full
design, and also reported those results for the median split
treatment of a variable, again in its entirety across the full
design. We did not make comparisons to select and go forward
to report only one finding that exceeded another. It had not
occurred to us that researchers might engage in the opportu-
nistic analyses that McClelland et al. conducted.

The next topic offered in the commentary involves Bayes. It
seems unlikely that McClelland et al. (2015) are suggesting that
researchers begin using Bayes analyses, either fully Bayes or
contemporary empirical Bayes (Berger, 1993; Casella, 1985;
Kass & Raftery, 1995; Scott & Berger, 2010; Zellner, 1981). In
any event, a Bayesian analysis was not shown, only the Bayes'
theorem. Presumably the point of invoking Bayes was to
demonstrate that large effect sizes can seem compelling.
Similarly, McClelland et al.'s power analyses are fine, but
again, their comments are not relevant to our core findings
because they are not specific to the statistical properties of median
splits. One way to increase power is to increase the strength of an
experimental manipulation. The logical implication of
McClelland et al.'s argument would seem to be that every
experiment should be conducted with maximally strong manip-
ulations, because otherwise power will decrease and the field will
suffer. Yet researchers often choose to try to demonstrate effects
in “minimal conditions” using non-intrusive manipulations, in
part because reviewers often object to “heavy-handed” manipu-
lations, and a more subtle manipulation speaks to the robustness
of the effects and the sophistication of the theory. We prefer
subtlety as more elegant, compared to an approach of “hitting
them over the head.” Using McClelland et al.'s analyses to
prescribe against the use of minimally intrusive manipulations
would be on par with their arguments against median splits, and in
both cases we feel differently. Let researchers decide—diversity in
such advocacies should be valued.

Moreover, with respect to issues about effect sizes in
general, it is important to note that it is typical in the maturation
of any area within a discipline to see large effect sizes
characteristic of main effects being established early on, and as
researchers progress toward more refined studies to examine
subtle interactions, by definition, such conditional effects will
be smaller (Chow, 1988; O'Grady, 1982). Popper (2002b)
refers to the calculus of probability, that in studying factors A
and B, p(A) and p(B) will equal or exceed p(A&B) (cf., rules of
conjunctive probabilities of Tversky & Kahneman, 1983), and
says that with the growth of scientific knowledge, scholars
want to work with theories of increasing content, thereby
implying decreasing probabilities or effect sizes. Hence
ironically, relatively small effect sizes can be indicative of
mature theories and mature literatures. In any event, these
issues are not germane to our demonstration that median splits
do not lead to increased Type I error when independent
variables are uncorrelated.

McClelland et al. deny how easily loss of power is offset

McClelland's second issue in this section also revolves
around power, and the possibility of increasing sample size to
increase power. First, a point of clarification: the reduction in
power (already discussed in Iacobucci et al., 2015) on a
correlation coefficient involving a median split is on the order
of 0.80 times the size of the correlation on the continuous form
of the variable (per Cohen, 1983), so when McClelland et al.
(2015) use the figure 0.64, they are either referring to r2 or an r
in which median splits have been taken on both variables
simultaneously. Next, it is well-known and quite standard to
suggest increasing sample size to enhance the power of most
statistical tests. Nowhere have we advocated that researchers
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collect some data, see if the desired results are significant, and
if not, collect more data. Nor does this issue have any remote
connection to median splits—researchers could do that using
regressions if they wanted to. Further, as we have previously
discussed, other factors such as the strength of a manipulation,
as well as variability, also affect power. McClelland et al. seem
to argue that any methodological decision that reduces power
should be rejected. However, researchers often try to demon-
strate effects with minimalist manipulations (as we noted
earlier), as well as within increasingly diverse samples to assess
generalizability (i.e., samples characterized by heterogeneity
and high inter-subject variability). Both of these methodolog-
ical choices serve to decrease power, and in our opinion neither
are, in McClelland et al.'s emphatic wording, “unconsciona-
ble.” We stand by our argument that sometimes researchers
may wish to make the trade-off in power to conduct a median
split.

Although their point is tangential, it is important to note that
McClelland et al.'s notion that the median splits used by
Kastrati et al. (2011) were dangerous is clearly incorrect. This
study involved patients in cardiac distress receiving one of two
often used treatments, and thus issues of experimental power in
the study have no bearing at all on patient mortality. As we
have stated multiple times, we believe that researchers should
have the option of conducting median splits, but be under no
compulsion to do so.
McClelland et al.'s questions regarding the simulations

McClelland et al. (2015) raise several questions about our
simulations. They refer to “technical errors,” “discrepancies,”
or “serious problems,” but it is their criticisms that are incorrect.
We need not simply protest, rather, we will show where, how,
and why their criticisms are wrong.

The first set of concerns surround interactions. First, they
criticize that we have generated data with a null effect for an
interaction. That is true. We also generated the data to have a
null effect for variable X2. Recall that the question in the
literature revolved around whether a median split on X1 could
impact Type I error rates on X2 (or on their interaction). If one
is to study Type I error rates, one must have null effects in the
population. We will say more on this matter shortly (they return
to the issue to reiterate the criticism). They also criticize the use
of a multivariate normal to generate data for X1, X2, and Y, yet
that is not quite what we did (in part to avoid this and related
issues), which McClelland et al. seem to know (because in a
moment we address that they criticized what we actually did, as
well). Perhaps we had not explained our methodology clearly
enough, however, if we used, call it method “A” to generate
data, then McClelland et al. might find grounds to criticize
method “A” but they cannot also criticize method “B” which
was not used. Generally, a critique is more persuasive when it is
internally consistent.

Next, they criticize that we offer two simulations, where we
could have simply offered one, to obtain the results presented in
our paper's first three figures. That's true. We explain how that
came to be and readers can judge for themselves whether this
issue is problematic.

Recall that the small data set that Maxwell and Delaney
(1993) constructed had three variables: Y, X1, and X2. The
concern in the literature had been that a median split on X1

would not just diminish power on a test about X1 but that it
might create a Type I error in testing for an effect on X2.
Accordingly, in our original paper, the simulations examined
the effects of a median split on X1 on the tests for both X1 and
X2. Those results came from our first simulation code. The
reviewers, and the Area Editor and Editor of the original
submission desired to see the effect on an interaction, and we
were happy to oblige—great idea. To do so, we had to modify
the first code to yield the second program. Why? The first
code covering the simpler scenario of just two predictors, was
programmed to obtain estimates of β1 and β2 as a function of
the zero-order correlation coefficients: rX1�X2 , rY�X1 , and rY�X2 .
Specifically, for standardized scores, the regression coefficients
may be written (and were encoded in our program) as: β1 ¼ðrY�X1− rY�X2 rX1 �X2 Þ

ð1− r2X1 �X2 Þ
and β2 ¼ ðrY�X2− rY�X1 rX1 �X2 Þ

ð1− r2X1 �X2 Þ
.

When a third term is added to a regression, those equations
are no longer elegant and it is standard to revert to matrix
algebra to obtain the estimates (recall, β̂ ¼ ðX0XÞ−1ðX0yÞ ),
hence, that is what we did. The second program derives results
on X1 and X2 as had the first program, and in addition, derives
the results on the interactions. The first program is therefore
indeed redundant, and its entirety (data generation and analysis)
is subsumed in the second program. The reader can see this in
our code in the second to last column; in the groups of
commands that appear after the phrase, “After the …” and
“Relabel the …” there are listed variable names mbeta1 (mean
for beta1), mbeta2, mbetaint (int for interaction), along with the
median split forms (abbreviated mdn), thus all terms are
present. Researchers can also note our header toward the
bottom of the second column of code that says, “Next, we were
asked to add the effect of interaction terms.” Given that the first
program is fully contained within the second, we could have
offered the second program alone. However, for purposes of
completeness, we included both programs in our Appendix.

Next, contained in that discussion, McClelland et al. raised a
question about how the data were generated, demonstrating
that they were confusing the method of testing for an
interaction by creating a product term (e.g., X1 × X2) with a
probability-generating function from which the data were
derived. We are happy to clarify this point as well. In statistical
theory for this domain, the sources of variability in an ANOVA or
regression for a model containing two main effect terms (X1 and
X2) and their interaction are stochastically independent—each
main effect might be significant or not, and the interaction term
might be significant or not, in any given data set. For “significant
or not” being two states of reality, and three predictor terms
such as two main effects and an interaction, the number of
combinations of significant patterns is 23. If a sample data set
were instead generated by creating two main effects and
multiplying those together, the population source for the
interaction would be a derivative function of the other two
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effects, which is not what statistical theory and the model
requires, nor does it reflect what is possible in real data sets.
In addition, in our simulation, we had imposed an effect on X1

to study the reduction in power of a median split on X1, and
we had imposed null effects in the population on the other main
effect and the interaction because we were investigating, per the
concern in the literature, whether a median split on one variable
could create spurious effects on other terms in the model. Our
approach was thus in keeping with statistical theory, and allowed
us to demonstrate the lack of ill effects from a median split over a
broader range of values on the accompanying second main effect
and interaction terms. At the same time, we can certainly
accommodate this concern of McClelland et al.—not to the data
generation stage of the program but to the data analysis stage of
the program—and here we agree that it would be more
conventional to, and we should have, simply taken the product
the way they suggest. To do so, the interested reader would make
the following changes. In the third column of our code, after the
“Replace” header, the command “interact = x[,4];” would be
replaced with “interact = x[,2]#x[,3];” and further down that
column, in the line that begins, “betatint;” the command
“interact = x[,4]#x[,5];” would be replaced with a “interact =
x[,3]#x[,5];” term. As it happens, the difference is immate-
rial, since both X2 and the interaction term X1 ∗ X2 were
built to have null effects in the population (we reran the
code with these changes and the results were identical, as
McClelland et al. (2015) no doubt noticed when running our
programs).

McClelland et al. (2015) return to their previous error in
logic when they express concern that the data sets we studied
were drawn from populations with no interaction effects. It is
true that our population was defined to have null interaction
effects, and again, here's why that was important. We agree that
real data typically look different in this regard, at least we hope
that most researchers are able to achieve significant (non-null)
moderating relationships to illustrate boundary conditions.
However, our research was not about finding some interaction
between two theoretically relevant predictors and a consumer
behavior criterion of interest. Our research was pointed to
address the then-concern in the literature that a median split
might create spurious results. A spurious result is and had been
defined in this literature as a Type I error. Type I errors can
only occur when the null hypothesis is true. Therefore, if we
wished to test whether a median split on X1 might create a Type
I error on X2 or an interaction term, then it needed to be the
case that the null hypothesis was true for X2 and the interaction
term. Thus, to make progress in a literature concerned with
Type I errors, we had to create conditions in which they might
arise.

In their section, “Simulations versus derivations,”McClelland
et al. (2015) present the equations for estimating β1 and β2 as a
function of the zero-order correlation coefficients as we have
done above and as had been in our code (interestingly, given their
concerns with our paper, their equations are based on amodel that
does not include an interaction term). It is certainly true that
some of our results may be proven analytically. They used
Mathematica in their online technical Appendix to manipulate
some equations, but these derivations are actually easy to do by
hand. For example, if we begin with the equations for β1 and β2:

β1 ¼
rY�X1−rY�X2rX1�X2ð Þ

1−r2X1�X2

� � and β2 ¼
rY�X2−rY�X1rX1�X2ð Þ

1−r2X1�X2

� �

and focus, per our paper's demonstrations, on the fact that median
splits create zero problems when there is zero multicollinearity
(and minimal problems when there is), we can substitute 0 for
rX1�X2 to derive the adjusted equations:

β1 ¼
rY�X1−rY�X2 � 0ð Þ

1−02
� � ¼ rY�X1 and β2 ¼

rY�X2−rY�X1 � 0ð Þ
1−02
� �

¼ rY�X2 :

We know that if we take a median split on X1, we can expect the
reduction in effect size of about 0.80, so the new β1 ¼ ð0:80ÞrY�X1

and because there is noX1 term in the equation,β2 ¼ rY�X2 remains
unaffected. These results are precisely what are shown in Iacobucci
et al. (2015)—a median split on X1 reduces its own effect size and
does not affect results on the other variables whatsoever.

Next, regarding “Unrepresentative sampling” and “Estimates
of β1 in Study 1,” McClelland et al. complain that we showed
only part of our results. This concern is a little odd. As we
explained in our paper, our full design yields results requiring a
large table with 375 cells. Its inclusion would be cumbersome, so,
as we stated in the paper, we presented a plot of a subset of
results. The full design is analyzed later in the paper, and we have
provided our code for interested readers if they wish to see the
results in the full 375-cell table. Certainly in an extensive
factorial, some combinations may be encountered less frequently
than others, but the principle of a full simulation is to examine the
phenomena over expansive ranges on orthogonal bases (per
linear algebra). Furthermore, the commentators try to counter our
vast coverage with the use of a single anecdote, one cell in the
factorial, from which they espouse more general concerns. Note
also that their choice involves high multicollinearity (rX1X2 ¼ 0:7
in their example), which is 0.7 greater than the level of multi-
collinearity wherein we mention that median splits perform
fine. Similarly, the commentators believe we should not have
aggregated the results, to which we might respond by saying that
in regression, a plot of N pairs of Xi and Yi data is aggregated to
an intercept and a slope parameter. We reiterate that readers can
easily regenerate the results with the code.

In the section, “Estimates of β2 in Study 1,” McClelland
et al. then explore some relationships, which is in the spirit of
our goal for a dialog about median splits. However, a number of
questions may be posed about their assumptions. For example,
they show relationships that occur when the extent of multi-
collinearity, rX1�X2 is less than the ratio of correlations of the
predictors with the dependent variable, rY�X1 and rY�X2 . That
condition can certainly happen, but it does not have to,
therefore their statements characterize an unknown and limited
principle. Next, they explored results under even more re-
strictive conditions, namely when rY�X1 ¼ rY�X2. That condition
can also certainly happen, but it tends not to, therefore the
conclusions are of little utility because of the extreme
restrictions used in producing the analyses. Finally, they make



Table 1
Likelihood judgments as a function of a median split performed on Need for
Cognitive Closure (NFCC) scores and explanation task.

Explanation task Low NFCC High NFCC

1) Control 65.95 64.37
2) Explain favorite 69.56 79.55
3) Explain favorite and plausible alternative 52.64 66.55
4) Explain favorite and implausible alternative 73.36 82.58
5) Explain favorite and 2 NFL alternatives 59.55 72.11
6) Explain favorite and 8 NFL alternatives 79.30 70.89
7) Explain favorite and 2 sitcom alternatives 53.74 68.35
8) Explain favorite and 8 sitcom alternatives 76.29 71.24
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up an Eq. (4) to combine βs on the continuous variables to
represent the β on the median split variable. This is creative
math. The equation should state that the estimate is also a
function of the correlation between X1 and X2 (as they do in
their Appendix). Doing so is obviously important, because they
use the equation to demonstrate some property when there is
multicollinearity, to which we would say yet again: we are not
advocating the use of median splits in the presence of
multicollinearity. If instead, the correlations between the
predictors is zero, rX1�X2 ¼ 0 , then their weight term, “w,”
reduces to zero, such that their Eq. (4) reduces to: β�Y2:1

¼ βY2:1
;

that is, the median split estimate β* is equal to the continuous
estimate β, as we have maintained.

In the section on “Study 2,” McClelland et al. criticize our
study as covering “a very narrow set of conditions” even
though our factorial covers three levels on sample sizes and five
levels of effect sizes, which is 14 more conditions than the
anecdotal observations offered by these and other authors.
Then, in a footnote, McClelland et al. state that they could not
reproduce our translation to mean differences, and we're happy
to clarify—based on rudimentary regression relationships, we
know ŷ = βx = rY,Xx for standardized variables. Plugging in
some value for x, essentially zx, is some number of X standard
deviation units, say ±1.0, ±1.5 and ±2.0, and using some value
for rY,X in our simulation, say 0.5, would yield predicted values
of ±0.5, ±0.75, and ±1.0 standard deviations on ŷ, for a total
spread of 2(0.5) = 1.0, 2(0.75) = 1.5, and 2(1.0) = 2 standard
deviation unit effects for predicted mean differences. In their
next footnote, McClelland et al. identify that we had a typo in
our Fig. 4. That's true, and we are grateful that they found
it—in Fig. 4 in Iacobucci et al. (2015), the 8th bar from the left
(in the Factor A results) should be at height 0.08 not at 0.11.
Again, we thank them for finding that error. McClelland et al.
then reiterate again their desire to see non-null effects (here, on
factor B and the interaction A × B), once again demonstrating
confusion about conditions under which Type I errors may be
studied.

In their final point, McClelland et al. illustrate in their Fig. 3
an abecedarian relationship between the sampling distribution
of a correlation and the impact that sample size typically has on
test statistics—that is, with increased sample sizes, standard
errors are smaller (that's why the distributions look tighter). In
other words, with increased sample sizes, power is enhanced.
This is a perfectly fine point to make, indeed one we have been
making. They claim that larger effects are problematic,
referring back to their Eq. (4), but recall that we showed how
their equation supports our research that when there is no
multicollinearity, there is no increase in Type I errors, hence
researchers may use a median split.

There were other errors in McClelland et al. (2015), such as
several instances of referring to a result as being “more
significant” or “less significant.” Presumably these comments
were meant to say “more likely to be significant” or “larger
effects.”

We opened our rebuttal to McClelland et al. with comments
on regression, and we close with a few more. We note that
generally, performing regression analyses on continuous scores
rather than blocking subjects into conditions based on a median
split can mask important differences that can be better observed
by comparing means across conditions. Consider the case of
Hirt, Kardes, and Markman (2004). This study investigated
effects of reasoning and “debiasing.” When people are asked to
provide explanations as to why a plausible event should
occur, doing so tends to make them form even more extreme
judgments of the likelihood of the event's occurrence.
Debiasing techniques are cognitive methods for reducing that
exaggerated enhancement. Table 1 presents mean judgments
(on a scale from 0 to 100) of how likely it was that Portland (the
league's then favorite) would win the NBA championship, as a
function of different explanation tasks and a median split
performed on scores on the need for cognitive closure scale.
Need for cognitive closure assesses the degree to which people
prefer a definitive answer to a judgment or decision problem,
even if this answer requires oversimplification or the sacrifice
of accuracy. As the first two rows in Table 1 show, the
explanation effect was more pronounced for individuals high
(vs. low) in the need for closure. Specifically, when the need for
closure was high, likelihood judgments were greater after
subjects explained why a particular outcome should occur,
namely that the NBA favorite Portland team should win the
NBA title, compared to a no explanation control condition
(Ms = 79.55 vs. 64.37). The explanation effect was also
significant but less pronounced when the need for closure was
low (Ms = 69.56 vs. 65.95).

Several debiasing conditions were investigated. Explaining
how a plausible alternative could win the NBA title signifi-
cantly reduced likelihood judgments, but explaining how an
implausible alternative could win did not. This study also
examined the effect of explaining alternatives in unrelated
domains (i.e., NFL teams and sitcoms) on likelihood judgments
of the favorite NBA team winning the NBA title. When the
need for closure was low, debiasing was effective when the
debiasing task was easy to perform (i.e., explain two
alternatives). However, debiasing backfired when the debiasing
task was difficult to perform (i.e., explain eight alternatives).
Debiasing backfired regardless of whether the unrelated
domain was the NFL (Ms = 79.30 vs. 69.56) or television
sitcoms (Ms = 76.29 vs. 69.56). When the need for closure
was high, little evidence of debiasing was found across
conditions.
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Unfortunately, that manuscript's editor insisted on replacing
median split analyses with regression analyses performed on
continuous need for closure scores. These analyses showed that
the effectiveness of easy-to-perform debiasing tasks increased
as the need for closure decreased, and that the effectiveness of
difficult-to-perform debiasing tasks decreased as the need for
closure decreased. However, regression analyses and plots
masked the conditions under which debiasing backfired, an
effect that can be seen clearly by comparing means across the
debiasing conditions and the control condition. It would be
theoretically and practically useful to know when a debiasing
technique is likely to be effective, and when a debiasing
technique backfires by actually increasing bias. This example
from Hirt et al. (2004) shows that important information can
be lost by performing regression analyses on continuous
scores.

Furthermore, in general, blocking or dividing subjects into
subgroups increases power and precision by decreasing “the
size of the within-group or error variation” (Rosenthal &
Rosnow, 1991, p. 457), is “equally as efficient for curvilinear as
for linear relationships between independent and dependent
variables” (Rosenthal & Rosnow, 1991, p. 462), and “can be
employed even when the blocks differ in qualitative rather than
quantitative ways” (Rosenthal & Rosnow, 1991, p. 462).
Rosenthal and Rosnow (1991, p. 462) acknowledge that,
“blocking always imposes some cost in terms of loss of df for
error, but that cost is usually small in relation to decreased MS
error.” Finally, some statisticians recommend tertiary or
quartiary splits over median splits (Gelman & Park, 2009),
which is also fine and would also permit the comparison of
mean differences.
Discussion

The core take-away from Iacobucci et al. (2015) is that when
independent variables are uncorrelated, conducting a median
split will not increase the likelihood of a Type I error being
made. This finding is important, because many researchers
developed an opposition to median splits based on the single,
simple, odd hypothetical data set that Maxwell and Delaney
(1993) created. Our study explains why, inconsistent with the
claims made in numerous subsequent papers critical of median
splits, Maxwell et al.'s data set does not imply that median
splits lead to the universal incidence of increased Type I error.
Instead, when independent variables are uncorrelated, per-
forming a median split does not pose a threat.

As we make clear in Iacobucci et al. (2015), median splits
may reduce power, which was the launching point for Rucker et
al. (2015). In our opinion and as witnessed by its use in vast
literatures, the benefits that researchers obtain from having the
option to report a median split analysis outweigh concerns with
reduced power, and accordingly we believe that researchers
should feel free to use median splits when, in their judgment,
such an analysis would add value. Rucker et al. feel differently,
and believe that concerns with Type II error are sufficient to
conclude that median splits should never be conducted. We
hope that readers will find our exchange useful as they form
their own opinions.

McClelland et al. (2015) took a different approach, and
offered a series of claims in their doubling down on the position
that median splits are always inadvisable. Although individuals
sometimes are indeed persuaded by the peripheral cue of the
number of arguments in a persuasive message (Petty &
Cacioppo, 1984), we addressed each of McClelland's et al.'s
objections to facilitate readers as they form their conclusions
about this debate.

Despite taking a different approach in their commentaries,
both Rucker et al. and McClelland et al. take the extreme position
that median splits should not be an option to researchers when
data are reported. Given the absolutism of the admonitions
contained in the commentaries, one would assume that given the
traditional popularity of median splits, and the large number
of papers that have used them over the decades, that both
commentaries would provide numerous instances in the consum-
er and psychological literatures of the untoward effects of median
splits. Indeed, whether the conclusions of individual papers, or
the erroneous evolution of theoretical perspectives, if conducting
median splits poses as ample and nefarious a threat to science as
claimed by Rucker et al. (2015) and McClelland et al. (2015), it
should be straightforward to craft a historical retrospective on the
use of median splits that documents myriad false findings and
missed opportunities.

Of course, neither set of commentators was able to match
their exposition with a delineation of the scientific blunders
that should be easy to find if the gravity of their concerns was
in step with analytic reality. The conclusions drawn in the
commentaries have the feel of “arguments from a vacuum”
(Dawes, 1979). If one takes the stance of a blanket prohibition
against median splits, supporting cases from the consumer and
psychological literatures should be numerous if the commen-
tators' concerns were warranted. As we discussed, the one
example from the medical literature that was offered (Mani et
al. versus Wicherts) was less than compelling. The absence of
problematic cases should loom large for readers weighing
whether such a prohibition is justified by the (lack of) evidence.
Our simulations and analyses are more consistent with the
scientific case history and vast median split usage in the
literature in supporting the conclusion that conducting a median
split is totally acceptable as long as independent variables are
uncorrelated.

In Iacobucci et al. (2015), we summarized reasons, as stated
in numerous sources in the literature, why median splits are
popular with researchers, and delineated the conditions under
which it is appropriate to conduct median splits. The traditional
popularity of median splits is consistent with the experience of
Hirt et al. (2004) and attests to the idea that median splits can be
a very valuable analytic technique. The Hirt et al. example also
illustrated how extreme prohibitions against conducting median
splits undermined the scientific process.

In the final analysis, working with a median split when
predictors are uncorrelated is completely valid. Equally valid is
the choice to analyze a continuous variable via regression. We
believe scientific progress is surer and swifter when researchers
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have a full repertoire of appropriate statistical tools available.
Making demands that researchers pull median splits from their
toolboxes is both unwarranted analytically and evidentially,
and poses an undue constraint on researchers' investigation and
communication of important findings.

It is important to not ignore the data. Our simulations clearly
show that median splits do not increase Type I error when the
independent variables are uncorrelated. When the independent
variables are correlated, regression is not in and of itself
the answer. We agree with Kruglanski et al. (1997) that the
appropriate statistical analyses depend on theory and the
specific research question that is being addressed, not on
dogma.

We recognize that our work stands in opposition to what has
become a mainstay of recent methodological teaching, but that
teaching is incorrect, and of course that is why this topic makes
for an interesting research dialog. At the end of the day we have
shown that median splits are robust in that performing them
does not lead to Type I errors when independent variables are
uncorrelated, and we, along with the dutiful efforts of the
commentators, have refined our collective understanding of the
properties of median splits by delineating when they will and
will not be appropriate. Accordingly, we have revived the
median split as a viable analytic option for researchers in the
contexts we have specified.

Going forward from this debate, we will live in a more
enlightened time. We will know that to state or imply that using
a median split is somehow inferior to using a continuous
variable is to be median-splitist, which should not be acceptable
in polite, scientific society. Researchers may once again use
median splits.

Viva the median split!

Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jcps.2015.06.014.
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